Chi-squared test

"Chi-squared test" is often shorthand for Pearson's chi-squared test.

A chi-squared test, also referred to as chi-square test or \chi^2 test, is any statistical hypothesis test in which the sampling distribution of the test statistic is a chi-squared distribution when the null hypothesis is true, or any in which this is asymptotically true, meaning that the sampling distribution (if the null hypothesis is true) can be made to approximate a chi-squared distribution as closely as desired by making the sample size large enough.

Some examples of chi-squared tests where the chi-squared distribution is only approximately valid:

One case where the distribution of the test statistic is an exact chi-squared distribution is the test that the variance of a normally-distributed population has a given value based on a sample variance. Such a test is uncommon in practice because values of variances to test against are seldom known exactly.

Contents

Chi-squared test for variance in a normal population

If a sample of size n is taken from a population having a normal distribution, then there is a well-known result (see distribution of the sample variance) which allows a test to be made of whether the variance of the population has a pre-determined value. For example, a manufacturing process might have been in stable condition for a long period, allowing a value for the variance to be determined essentially without error. Suppose that a variant of the process is being tested, giving rise to a small sample of product items whose variation is to be tested. The test statistic T in this instance could be set to be the sum of squares about the sample mean, divided by the nominal value for the variance (i.e. the value to be tested as holding). Then T has a chi-squared distribution with n – 1 degrees of freedom. For example if the sample size is 21, the acceptance region for T for a significance level of 5% is the interval 9.59 to 34.17.

See also

References

External links